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ABSTRACT

-
v

We analyze the computational complexity of the cost-table approach to designing multiple
alued logic circuits that is applicable to I L, CCD’s, current-mode CMOS, and RTD’s. We

s

2

how that this approach is NP-complete. An efficient algorithm is shown for finding the exact

I

minimal realization of a given function by a given cost-table.
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I. INTRODUCTION

The first demonstration that a logic synthesis problem is NP complete occurred as the result of

-

d

two insights. To find the minimal sum-of-products expression for a logic function, one can pro

uce the set S of all prime implicants and then use a minimal subset of S to cover all minterms

s

s

of the function. The latter step is a specific case of the set covering problem. Because it i

pecific case, it is possible that it is not as complex as the general set covering problem. How-

p

ever, Gimpel [2] showed that this is not true. He showed that any instance of the set covering

roblem occurs as an instance of the sum-of-products problem. Subsequently, Karp [3] proved

-

p

that the set covering problem is NP-complete; thus, proving that extracting a minimal sum-of

roducts expression is NP-complete. While complexity questions have frequently occurred in

m

1

ultiple-valued logic (e.g. [1,7]), there has been no classification of the synthesis of multiple-

valued functions complexity classes, e.g. NP-completeness.

The need for design techniques for multiple-valued CCD circuits, [5], inspired interest in the

s

cost-table approach, e.g. [1, 6, 7]. In the cost-table approach, a given function is realized by

electing functions from a table and combining them. Associated with each chosen function is a

s

t

cost, which can represent chip area, power dissipation, speed, etc. The cost of a realization i

he sum of the costs of the component functions plus the cost of combining them. Usually, there

-

t

is more than one way to realize a given function, and the goal of the design is to find a realiza

ion of lowest cost. This is called the Cost-table Realization problem. The question posed and

d

answered in this paper is "How the does the time to solve the cost-table realization problem

epend on the size of the cost-table?". We show that this problem is NP-complete.

II. BACKGROUND AND NOTATION

A function f (X ) is a mapping f : D → R , where D = {0, 1 , . . . , d −1} and
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

n

Keutzer and Richards [4] point out that there has been misunderstanding in certain papers on the complexity of the sum-of-products extraction
p

1

roblem. That is, the problem of finding a sum-of-products expression with no more than some given number of terms is NP-complete if the func-
tion is expressed as a truth table, but co-NP hard if the function is expressed as a sum-of-products expression.
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W

R = {0, 1 , . . . , r −1}.

hen n = 1, it is convenient to represent f (X ) in the form < f (0), f (1), . . . , f (d −1)>. For

t

o

example, if d = r = 4, then f (X ) = <3,2,1,0> is the four-variable complement function. The se

f all r -valued functions of n d -valued variables is U . Let c ( f ), the cost function, be a map-r
n

r 0+ 0+

d ,

np d ,ing c : U → RRRR , where RRRR is the set of nonnegative real numbers. For example, the cost

c

function c ( f ) introduced by Kerkhoff and Robroek [6] for the design of 4-valued CCD logic cir-

uits correlates closely with the chip area occupied by the most compact implementation of f .

m

f

Given a function f (X ) to be realized using a cost-table, we seek a representation of the for

(X ) = f (X ) ++++ f (X ) ++++ . . . ++++ f (X ), where ++++ is ordinary addition with logic values viewed1 2 m

1 2 nas integers. For example, if f (X ) = <0, 1, 2, 3> and f (X ) = <3, 2, 1, 0>, the

f (X ) ++++ f (X ) = <3, 3, 3, 3>. In our analysis, it is convenient to assume that the sum of two

l

1 2

ogic values does not exceed the highest logic value, r −1. Thus, ++++ can be implemented as the

s

e

sum mod r or as truncated sum, for example. The latter is more common in practice, since it i

asily implemented, e.g. in CCD or current-mode logic. The effect of this assumption is not to

-+ f is not a reali++restrict the operations possible, but the synthesis technique. For example, f +1 1

.

L

zation of the synthesis technique because two components sum to a value greater than r − 1

et σ be the cost of realizing the sum of two functions. The cost of the realization

+ f is+++ . . . ++++ f +++f = f +1 2 m

1 2 m ,

w

c ( f ) + c ( f ) + . . . + c ( f ) + (m −1) σ

here σ is the cost of combining two cost-table functions.

s

t

A basis function f has the property that f (A ) is 1 for exactly one assignment A of value

o X and is 0 for all other assignments. Let BT be the set of all basis functions plus 00, the func-

b

tion that is 0 for all assignments of values to the variables (e.g., <0,0,0,0>). BT is called the

asis cost-table. F is a cost-table if and only if BT ⊆ F ⊆ U . Note that all functions in BTr
nd ,

t

b

are needed in F . Indeed, if the function f to be realized has the property f ∈BT , then f canno

e realized, unless f ∈F . Of all the ways to realize a given function f using cost-table F , one

2



realization, f = f ++++ f ++++ . . . ++++ f , where f ∈F , has a cost that is lower than or equal to1 2 m i

1 2 m+ f+++ . . . ++++ f +++

a

the cost of all other realizations of f using F . Denote realization f = f +

s a minimal cost realization of f . Note that, there may be more than one such realizations. Its

-cost, c ( f ) + c ( f ) + . . . + c ( f ) + (m −1) σ, is the cost of realizing f ∈U using cost1 2 m d ,n

t F

r

able F, and will be denoted as c ( f ). Thus, whenever we seek the cost of realizing a given

u

function f using a given cost-table F , we assume that, of all the ways to realize a function f

sing cost-table F , we choose the lowest cost realization. Formally,

,c ( f ) = min {c ( f ) + c ( f ) + . . . + c ( f ) + (m −1) σ }F 1 2 m
f , f ,..., f ∈F1 2 m

mf 1 2= f ++++f ++++ . . . ++++f

sThe total cost, T (F ), of cost-table F i

T (F ) = c ( f ).
r

nd ,

F
f ∈U
Σ

F is a minimal cost-table if T (F ) ≤ T (F′ ), for all F′ , such that e F e = e F′ e , where e F e is the

cardinality of F . The term "minimal" describes the cost over all realizations of a cost-table.

The (Minimal) Cost-table Realization, (MCR) CR, problem is:

l

c

Given a (minimal) cost-table F , a function f , and a cost function c , find a minima

ost realization f = f ++++ f ++++ . . . ++++ f , where f ∈ F .

T

1 2 m i

he (Minimal) Cost-table Decision, (MCD) CD, problem is:

,

d

Given a (minimal) cost-table F , a function f , a cost function c , and a target cost P

oes there exist a realization f = f ++++ f ++++ . . . ++++ f , such that

c 1 2 m i

1 2 m

( f ++++ f ++++ . . . ++++ f ) ≤ P , where f ∈ F ?

Let (MCD(F , f , c , P )) CD(F , f , c , P ) denote an instance of this problem. (MCD(F , f , c , P ))

i

CD(F , f , c , P ) is said to be satisfied if and only if such a realization exists. The size K of an

nstance of (MCD(F , f , c , P )) CD(F , f , c , P ) is d e F e . K accounts for both the function size,

3
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as well as the cost-table size. Since the MCD(F , f , c , P ) is a special case of the

s

n

CD(F , f , c , P ), there is the possibility that it is not as complex. We show, however, that this i

ot the case.

III. COMPLEXITY OF THE COST-TABLE REALIZATION PROBLEM

T

The main results are presented in two theorems.

heorem 1: The Cost-table Decision problem is NP-complete.

.Theorem 2: The Minimal Cost-table Decision problem is NP-complete

We proceed by first showing that these two problems are within NP; that is, we show in,

t

Lemma 1, that there exists a non-deterministic Turing Machine that calculates each problem in

ime polynomial in the size of the problem.

Next, in Lemma 2, we show that there is a polynomial time transformation of the Knapsack

r

i

problem to the (Minimal) Cost-table Decision Problem, where the former is satisfied iff the latte

s satisfied. Since the Knapsack problem is known to be NP-complete, this shows that the

(Minimal) Cost-table Decision problem is NP-complete.

Consider the solution of (MCD(F , f , c , P )) CD(F , f , c , P ) by a non-deterministic algorithm

ethat scans F , choosing as many as r − 1 copies of each function for each of the d possibln

n .

T

assignments of values to the variables. This can be done in no more than OO((r − 1) d e F e ) time

his algorithm can check whether the chosen function is a realization of f in OO(d ) time. Also,n

f

a

it can check whether the cost is less than or equal to P in OO((r −1) e F e ) time. Since the size o

n instance of this problem is K = d e F e , this proves the following.

L

n

emma 1: There exists a non-deterministic algorithm that solves (MCD(F , f , c , P ))

CD(F , f , c , P ) in time that is polynomial in its size.

4



:The Knapsack Decision problem can be stated as follows

Given a set Q of objects, a size function s :Q →ZZZZ , a value function v :Q →ZZZZ , a+ +

′u Q∈
Σ dsize S , and a value V , is there a subset Q′ ⊆ Q such that v (u ) ≥ V an

s (u ) ≤ S , where ZZZZ is the set of positive integers?Σ
∈u Q ′

+

Let KD(Q , s , v , S , V ) be an instance of the Knapsack Decision problem. KD(Q , s , v , S , V ) is

-

l

said to be satisfied if and only if such a subset Q ′ exists. The size of an instance of this prob

em is e Q e .

Definition: Let Φ be a transformation from any instance of the Knapsack Decision problem to

an instance of the (Minimal) Cost-table Decision problem

Φ(KD(Q , s , v , S , V )) = (MCD(F , f , c , P )) CD(F , f , c , P ),

1)

with F , f , c , and P defined as follows:

The cost-table F consists of r -valued functions on one d -valued variable, where r = S +1

,and d = e Q e +1. Besides the d + 1 functions in BT , there are d −1 non-basis functions f 1

f 2 d −1 i i i i, . . . , f , where f corresponds to u , the i th element in Q . Specifically, f (0) = s (u ),

f (i ) = 1, and f ( j ) = 0 , for 1 ≤ j ≤ d − 1, j ≠ i . We havei i

d −1

1

2

d −1f

1

2
...

f

f

=

=
=

<s (u ), 0, 0, 0, . . . ,1>.

<

..

.
s (u ), 0, 1, 0, . . . ,0>

<s (u ), 1, 0, 0, . . . ,0>

2) Function f has the form

5



f = <S , 1, 1, 1, . . . , 1>.

.Since f (i ) = 1 for 1 ≤ i ≤ d −1, each f can be used at most once in the realization of fi

i ∈ -

s

This corresponds to the restriction that each element u S is used at most once in the Knap

ack Decision problem. Also, since f (0) = S , the sum f (0) over the f ’s used in a reali-Σ i

z i

i

ation of f (i.e. s (u )) must be less than or equal to S .

3) Let c ( f ) = s (u ), for 1 ≤ i ≤ d −1. Let the cost of functions in BT be defined as follows.i i

j
j

c (b ) =
I
K
Lv (u )

0
otherwise
if j = 0

,

ewhere b ( j ) = 1 and b (i ) = 0 for i ≠ j . That is, the cost of <1,0, . . . ,0> is 0, while thj j

cost of all other basis functions is the value of some object in Q . The cost of the constant

function <0,0, . . . ,0> is 0. Let the cost, σ, of combining two functions be 1.

If Φ is a transformation to CD(F , f , c , P ), we allow any specification of the cost of a

efunction g , such that g F . If Φ is a transformation to MCD(F , f , c , P ), we make th∈/

∈/additional specification that, for g F , c (g ) = ∞. In this way, F is a minimal cost-table;

t

i.e. no interchange of functions outside F with functions inside F that preserves the size of

he cost-table yields a total cost lower than T (F ).

4) P is defined by

(1)P = v (u ) − V + (S + d − 2).
∈ui Q

iΣ

1 2 3 i dExample: Consider a knapsack defined as follows. Let Q = {u , u , u }, and let s (u ) an

v (u ) be specified as follows.i

6



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

s i i(u ) v (u )
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

3 4
i

u 1
iiiiiiiiiiiiiiiiii

i
u 2 2 3

iiiiiiiiiiiiiiiiii

i
u 3 2 2

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
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c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

.

Let S = 5 and V = 6.

Table I: Sizes and values of elements of the knapsack

Of the 8 ways to choose subsets of Q , there are two that satisfy KD (Q , s , v , S , V ),

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Σ
1

Q 1 1 2
u ∈Q

= {u , u } v (u ) = 7 ≥ V = 6

Σ s (u ) = 5 ≤ S = 5
1u ∈Q

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Σ
2

Q 2 1 3
u ∈Q

= {u , u } v (u ) = 6 ≥ V = 6

Σ s (u ) = 5 ≤ S = 5
2u ∈Q

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c

.

A

Table II: The two solutions to the Knapsack Decision problem

pplying the transformation yields a cost-table where r = 6 and d = 4 with functions
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
Function Cost
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

<

<0,0,0,0> 0 0

1,0,0,0> 0 0

<0,1,0,0> 4 v (u )

2

1

)

<

<0,0,1,0> 3 v (u

0,0,0,1> 2 )v (u 3

1)

<

<3,1,0,0> 3 s (u

3,0,1,0> 2 )s (u 2

3)
i
<2,0,0,1> 2 s (u
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
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c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.

T

Table III: Cost-table as transformed from the Knapsack Decision problem

he function to be synthesized is f = <5,1,1,1>, and P = 10. The instance of the cost-table

s

f

decision problem, CD (F , f , c , P ) so formed, is satisfied by exactly two realizations of f , a

ollows.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
Function Cost Function Cost
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

<

<3,1,0,0> 3 <3,1,0,0> 3

2,0,1,0> 2 <2,0,0,1> 2

3
i
<0,0,0,1> 2 <0,0,1,0>
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
Additions 2 Additions 2
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i
Total 9 Total 10
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

.Table IV: Two solutions to the Cost-table Decision problem

1 2 1 3 gThese two realizations match left to right with {u , u } and {u , u }, the subsets satisfyin
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KD(Q , s , v , S , V ). Note that, of the two realizations of <5,1,1,1,1>, one is uniquely

W

minimal, that given in the left hand column above.

e can make the following general statement.

eLemma 2: Φ is a polynomial time transformation of the Knapsack Decision problem to th

(Minimal) Cost-table Decision problem, such that KD(Q , s , v , S , V ) is satisfied if and only if

P

(MCD(F , f , c , P )) CD(F , f , c , P ) = Φ(KD(Q , s , v , S , V )) is satisfied.

roof: The proof is divided into three parts. First, it is shown that Φ takes polynomial time.

(

Then, it is shown that, if KD(Q , s , v , S , V ) is satisfied, then Φ(KD(Q , s , v , S , V )) is satisfied

only if). Finally, it is shown that, if Φ(KD(Q , s , v , S , V )) is satisfied then,

KD(Q , s , v , S , V ) is satisfied (if).

To form the cost-table F ⊆ U , Φ generates d −1 = e Q e non-basis functions, d basisr
1

f

d ,

unctions, and the constant function <0,0, . . . ,0>. Each function can be described by a

t

t

truth table with d = e Q e + 1 entries. An entry in the truth table can be made in constan

ime. Thus, the total time needed to generate F is OO( e Q e ). A cost is then assigned to each

i

2

,

t

function requiring constant time per function. Since s (u ) can be computed in constant time

he target function f can be formed in OO( e Q e ) time. Finally, P requires the summation of

all v (u ), which also takes OO( e Q e ) time. Since each step takes at most polynomial time, thei

entire transformation takes polynomial time.

rAs preparation for the next two parts, conside

g =

I
J
K
J
Lb

b

f

if d ≤ i ≤ m

if u Q ′ and 1 ≤ i ≤ d −1

if u Q ′ and 1 ≤ i ≤ d −1

,i

i

i

i

0

i ∈/

w

∈

here Q′ is the subset of Q that satisfies the Knapsack Decision problem and

.+ g = f+++ . . . ++++ g +++m = S − S′ + e Q e , for S′ = s (u ). We now show that g +
iu ∈Q′

i 1 2 mΣ
9



.+ g , when the variable value is 0+++ . . . ++++ g +++Consider g +1 2 m

i =1

m

i
u Q ′

i
u Q ′

i
i =d

m

0g
i i

(0) = f (0) + b (0) + b (0)Σ Σ Σ Σ
∈ ∈/

∈
Σ

ui Q ′
i= s (u ) + 0 + (m −d +1) = S′ + 0 + (S −S′ ) = f (0).

e+ g is evaluated as follows. By th+++ . . . ++++ g +++When the variable value is not 0, g +1 2 m

i

m

1
i i i

i =
Σ r

1

definition of f and b , g ( j ) = 0 if i ≠ j and 1 ≤ j . Therefore, g ( j ) = 1 = f ( j ), fo

≤ j ≤ d −1. This proves that g ++++ g ++++ . . . ++++ g = f .1 2 m

m1 2 s+ g i+++ . . . ++++ g +++The cost of realization f = g +

s (u ) + v (u ) + 0 + (m − 1)Σ
∈/
Σ

i iu ∈Q′
i

u Q′
i

or

S′ + v (u ) − V′ + (S − S′ + e Q e − 1) ,
ui ∈Q

i

ui

Σ

Σ

∈ Q′
iwhere V′ = v (u ). From (1), the cost of this realization is P − V′ + V .

s

S

(only if) Assume KD(Q , s , v , S , V ) is satisfied by Q′ . The size of this collection i

′ = s (u ), and the value is V′ . Since Q′ satisfies KD(Q , s , v , S , V ), S′ ≤ S and
ui ∈ Q′

iΣ

FV′ ≥ V . Now consider c ( f ), the minimal cost realization of f in cost-table F . Because

-+ g is an upper bound on the minimal cost reali+++ . . . ++++ g +++the cost of the realization g +1 2 m

F F n

M

zation, c ( f ) ≤ P − V ′ + V . Since V′ ≥ V , c ( f ) ≤ P . If F is a minimal cost-table, the

CD(F , f , c , P ) is satisfied. Else, CD(F , f , c , P ) is satisfied.

e

r

(if) Assume Φ(KD(Q , s , v , S , V )) = (MCD(F , f , c , P )) CD(F , f , c , P ) is satisfied by th

ealization f = h ++++ h ++++ . . . ++++ h , where h F . Then, c (h ) + (l − 1) ≤ P. We show that1 ∈2 l i
i =1

l

i

10
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rthe Knapsack Decision problem is satisfied fo

Q′ = {u e h BT }.i i ∈/

,To calculate the "size" of the solution, consider the function evaluated at 0; that is

h (0) = f (0). We can write
i
Σ
=1

l

i

u ∈Q ′
i

u Q ′
i ,Σ h (0) + h (0) = SΣ

i i ∈/

where the functions in the right sum are in BT , while those in the left sum are not. Since

h (0) ≥ 0, the right sum in the above equation is nonnegative. Therefore, h (0) ≤ S and
i

ii
u ∈Q ′
Σ

thus,

s (u ) ≤ S.
ui ∈
Σ

Q′
i

nTo calculate the "value" of the solution, consider the cost of the realizatio

f = h ++++ h ++++ . . . ++++ h . Because this is a solution to (MCD(F , f , c , P )) CD(F , f , c , P ),1 2 l

i =1

l

iΣc (h ) + (l − 1) ≤ P.

,Inserting the definitions of P and c (h ) into this equation yieldsi

u ∈Q′
i

u Q′
i

u ∈Q
i .Σ s (u ) + v (u ) + l − 1 ≤ v (u ) − V + (S + d − 2)Σ Σ

i i i∈/

Rearranging, yields

V + R
J
Q
l − [(d −1) + S − s (u )] H

J
P

≤ v (u ).
ui i∈Q′

i
u ∈Q′

iΣ Σ

Σ
i

i
u ∈Q

k

D

We show that the term in large brackets is 0. Thus, V ≤ v (u ), and so the Knapsac

ecision problem has a solution. Each of the 1 terms in f = <S , 1, 1, . . . ,1> is realized

,by either a b or an f , for 1 ≤ i ≤ d − 1. The f terms contribute s (u ) to f (0). Thus
i

ii i i
u ∈Q′
Σ

11



S − s (u ) copies of b are needed. It follows that l = (d − 1) + S − s (u ). Thus,
ui i∈Q′

i 0
u ∈Q′

iΣ Σ

Σ Σ
∈ ∈ii

i
u Q ′

i
u Q ′

.a solution to KD(Q , s , v , S , V ) exists, such that s (u ) ≤ S and v (u ) ≥ V

Q.E.D.

I

Since the Knapsack Decision problem is NP-complete, Lemmas 1 and 2 prove the main result.

V. AN ALGORITHM FOR FINDING MINIMAL COST

.

N

In this section, we present an algorithm, MINiCOST, for solving the cost-table problem

ext, we analyze the time complexity of MINiCOST, showing how the number of steps depends

-

t

on K , the size of the problem. We show that for smaller cost-tables, the complexity is exponen

ial, while for larger cost-tables, the complexity is polynomial in the size of the problem.

A. MINiiCOST

We present an algorithm, MINiCOST to find the minimal cost realization of a function f

h

m

using the cost-table technique. Specifically, MINiCOST (F , f ) finds a realization of f wit

inimum cost, c ( f ), given any cost-table F ⊆U and any function f U . No other pub-r
n

r
d ,nF d , ∈

e

a

lished algorithm is known. It is superior to the exhaustive search algorithm used in [7]. Th

lgorithm for solving CD given in Section III is the nondeterministic version of a deterministic

-

t

algorithm that searches exhaustively over all combinations of cost-table functions for a realiza

ion with a cost less than a given threshold. Searching for the least cost realization yields

behavior that is identical to MINiCOST.

However, it is not necessary to search over all cost-table functions. Given two functions,

.

I

f and e , let e ≤≤ f mean that, for every assignment A of values to the variables, e (A ) ≤ f (A )

t follows that, unless e ≤≤ f , e will never be used in a realization of f . Let E = {e e e ≤≤ f }.

(E , ≤≤) is a partially ordered set, and the elements in E can be indexed such that, for all

12



e e E , if e ≤≤ e , then j ≤ k . Then, e = 00 (the constant 0 function) and e = f . Letj , k j k 0 e E e − 1∈

∩I = (F E ) − BT . I consists of all functions in cost-table F that are potentially in the minimal

B

realization of f , excluding functions in BT . MINiCOST forms a sequence of cost-tables

T = F ⊂ F ⊂ . . . ⊂ F , such that for F − F = {f }, where f ∈ I . MINiCOST0 1 e I e i i −1 i i

F j BT j ib
0

egins by initializing c (e ) to c (e ), for 0 ≤ j < e E e . Then, for each cost-table F , where

a1 ≤ i ≤ e I e , c (e ) is computed for each e E . When MINiCOST reaches F , it has found
iF j j e I e∈

.minimal cost realization of the given function f in cost-table F

MINiCOST only checks for one use of f in the realization of any e . A complication

i

i j

j r

t

arises if f is required more than once in the minimal realization of some function e . Conside

he case where e == f ++++ f ++++ e , and e == f ++++ e . Since e ≤≤ e ≤≤ e , the ordering over Ek i i r s i r r s k

F k F i F sr
k i i

equires that r ≤ s ≤ k . So c (e ) will be calculated using c ( f ) and c (e ), but the cost of

e will have already been updated using the functions f and e . Therefore, algorithms i r

e

f

MINiCOST correctly computes the cost of functions which use multiple copies of cost-tabl

unctions.

B. THE TIME COMPLEXITY OF MINiiCOST

1. The Time Complexity for a Single Function.

MINiCOST consists of two steps. First, the cost of each e E using the basis cost-table isj ∈

nn -

t

computed by summing over all functions in BT , requiring d operations or OO(d e E e ) opera

ions for all e . Second, for each cost-table F , the new cost of each e is computed, requiring

a n

j i j

t most OO(d e E e ) operations per cost-table. Since there are e I e cost-tables, the entire algorithm

has time complexity OO(d e I e e E e ).n

In [7], cost-tables for one-variable 4-valued functions were analyzed in order to study heuris-

-

t

tics for finding minimal cost-tables. We can conclude that MINiCOST works well for cost

ables for such functions with sizes as small as 5 and as large as 256.

13



iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

i Algorithm MINiiCOSTiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

{ Compute costs of e ∈E (and thus f ) using the basis cost-table }i

F 0
c (00) := c (00)

for j := 1 to e E e − 1 do
c (e ) := e (A ) c (b ) + e (A ) σ − σF 0 j

b (A )=1
b ∈BT

j

b (A )=1
b ∈BT

jΣ Σ
j j e

a
{where σ is the cost of adding two functions and e (A ) is the value (viewed as an integer) of e for th
ssignment of values A such that b (A ) = 1. The left sum represents the costs of basis functions, while the

{

right sum less σ represents the costs of adders.}

Compute costs of e ∈E (and thus f ), using F , the next cost-table in the sequence }
f

i i

or i := 1 to e I e do
begin { for f in I , where { f } = F − F }.i i i i −1

j i j i −1 }for j := 0 to e E e − 1 do {set the cost of a function e using F to the cost of e using F
c (e ) := c (e )Fi j Fi −1 j

i Fi −1 iif c ( f ) < c ( f )

then
begin { update the cost of e using F if it is less than the cost of e in F }

F

j i j i −1

i i ic ( f ) := c ( f )

for j := 0 to e E e − 1 do
if f = e then c (e ) = min{c (e ), c ( f )}i j Fi j Fi −1 j i

i jelse if f ≤≤ e
then

begin
find h such that h + f = ei j

Fi iNEWiCOST := c (h ) + c ( f ) + σ
c (e ) := min{c (e ), NEWiCOST }Fi j Fi −1 j

end
end { update the cost of e in F if it is less than the cost of e in F }

i

i i j i −1

i i i −1end { for f in I , where { f } = F − F }.iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

t
Table V: Formal description of MINiCOST, an algorithm for finding
he minimal cost realization of a given function from a given cost-table.

2. The Time Complexity as a Function of Input Size

From the previous analysis, the time complexity of MINiCOST is polynomial in e E e . We

K

now consider the relationship between e E e and the size of the Cost-table Decision problem

= d e F e . Let F be a cost-table of size one larger than the basis cost-table; thereforen

ne F e = d + 2. Let f , the function whose cost we wish to minimize, be the constant r − 1 func-

,tion, so E = U , and e I e = 1. In this case, the time complexity of MINiCOST is OO(d r )d ,n
r n d n

w n nhile the size of the problem is K = d (d + 2). Thus, MINiCOST’s time complexity is

OO( K r ).K√dd √dd

14



As the size of the cost-table e F e increases, the time complexity of MINiCOST becomes

spolynomial in e F e . In the limit, F = U , and the time complexity of MINiCOST becomed ,n

n

r

d d n d n
O

n n
O(d r r ), while the size of the problem is K = d r . Thus, MINiCOST’s time com-

plexity, OO(K /d ), is polynomial in the size of the problem, when the cost-table is sufficiently2 n

r
nd , .

3

large (approaching U )

. The Time Complexity for All Functions

In the process of finding a minimal cost of function f , MINiCOST finds a minimal cost

realization for all functions e E . If f is chosen to be the constant r −1 function, then e ≤≤ fj ∈

∈ d ,n
r

d ,nf ror all functions e U , so E = U . Using the previous analysis, a minimal cost realization

of all functions can be found in OO(d e F −BT e r ) time by MINiCOST. Thus, MINiCOSTn d n

-

i

provides a more efficient alternative to exhaustive search algorithms, as demonstrated in analyz

ng various cost-tables [7].

SV. CONCLUDING REMARK

During the past fifteen years of research on cost-tables, there has been no computationally

s

p

tractable algorithm for finding minimal cost realizations of given functions. We show that thi

roblem is NP-complete. We also show that restricting the cost-tables to be minimal (the total

c

cost of realizations by such cost-tables is minimal) produces no relief; the problem is still NP-

omplete. This result represents compelling evidence for the value of heuristic methods for

V

cost-tables.
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